ఈ రోజు ఆర్టికల్ మనం కొన్ని Trigonometry Formulas తెలుసుకోవచ్చు.
Sin A = Opposite Side to A / Hypotenuse
Cos A = Adjacent Side to A / Hypotenuse
Tan A = Opposite Side to A / Adjacent Side to A
Sec A = Hypotenuse / Adjacent Side to A
Cosec A = Hypotenuse / Opposite Side to A
Cot A = Adjacent Side to A / Opposite Side to A
Tan A = Sin A / Cos A
Cot A = Cos A / Sin A
Sin A = 1 / Cosec A
Cos A = 1 / Sec A
Tan A = 1 / Cot A
Sec A = 1 / Cos A
Cosec A = 1 / Sin A
Cot A = 1 / Tan A
Sin 0 = 0
Sin 30 = ½
Sin 45 = 1/√2
Sin 60 = √3/2
Sin 90 = 1
Sin 180 = 0
Sin 270 = -1
Sin 360 = 0
Cos 0 = 1
Cos 30 = √3/2
Cos 45 = 1/√2
Cos 60 = 1/2
Cos 90 = 0
Cos 180 = -1
Cos 270 = 0
Cos 360 = 1
Tan 0 = 0
Tan 30 = 1/√3
Tan 45 = 1
Tan 60 = √3
Tan 90 = infinity
Tan 180 = 0
Tan 270 = infinity
Tan 360 = 0
Sec 0 = 1
Sec 30 = 2/√3
Sec 45 = √2
Sec 60 = 2
Sec 90 = infinity
Sec 180 = -1
Sec 270 = infinity
Sec 360 = 1
Cosec 0 = infinity
Cosec 30 = 2
Cosec 45 = √2
Cosec 60 = 2/√3
Cosec 90 = 1
Cosec 180 = infinity
Cosec 270 = -1
Cosec 360 = infinity
Cot 0 = infinity
Cot 30 = √3
Cot 45 = 1
Cot 60 = 1/√3
Cot 90 = 0
Cot 180 = infinity
Cot 270 = 0
Cont 360 = infinity
sin(90°−x) = cos x
cos(90°−x) = sin x
tan(90°−x) = cot x
cot(90°−x) = tan x
sec(90°−x) = cosec x
cosec(90°−x) = sec x
sin(x+y) = sin(x)cos(y)+cos(x)sin(y)
cos(x+y) = cos(x)cos(y)–sin(x)sin(y)
sin(x–y) = sin(x)cos(y)–cos(x)sin(y)
cos(x–y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+y) = (tanx+tany) / (1-tanx*tany)
tan(x-y) = (tanx-tany) / (1+tanx*tany)